On the High Rank Π/3 and 2π/3-congruent Number Elliptic Curves
نویسنده
چکیده
Consider the elliptic curves given by En,θ : y 2 = x + 2snx − (r − s)nx where 0 < θ < π, cos(θ) = s/r is rational with 0 ≤ |s| < r and gcd(r, s) = 1. These elliptic curves are related to the θ-congruent number problem as a generalization of the congruent number problem. For xed θ this family corresponds to the quadratic twist by n of the curve Eθ : y 2 = x +2sx − (r − s)x. We study two special cases θ = π/3 and θ = 2π/3. We have found a subfamily of n = n(w) having rank at least 3 over Q(w) and a subfamily with rank 4 parametrized by points of an elliptic curve with positive rank. We also found examples of n such that En,θ has rank up to 7 over Q in both cases.
منابع مشابه
Families of Non-θ-congruent Numbers with Arbitrarily Many Prime Factors
The concept of θ-congruent numbers was introduced by Fujiwara [Fu97], who showed that for primes p ≡ 5, 7, 19 (mod 24), p is not a π/3-congruent number. In this paper we show the existence of two infinite families of composite non-π/3-congruent numbers and non-2π/3-congruent numbers, obtained from products of primes which are congruent to 5 modulo 24 and to 13 modulo 24 respectively. This is ac...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012